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Abstract

The interest in the design of manipulators for space operations with a light structure has grown meaningfully in

comparison with rigid manipulators, even if these ¯exible manipulators are unavoidably characterized by a nonneg-

ligible structural ¯exibility. This paper deals with the ®rst phase of a project ®nanced by a grant from the Italian Space

Agency, which is concerned with the setting up of an open-loop control for a planar manipulator with ¯exible linkages.

In this phase, the project is subdivided into two parts: on the one hand, di�erent command inputs have been proposed

for point-to-point operations; on the other hand, dynamic simulations have been carried out by using a multibody

model with ¯exible parts, in order to evaluate the residual vibrations due to the selected command input at the end of

the motion. These command inputs will be applied to the actual manipulator, which is already available, in a future

phase of the project. The command inputs, which are described here, are based on both the convolution of special

impulse inputs suitably chosen on the basis of the system natural frequencies and the reduction of impulsive inertia

forces by means of a suitable algorithm proposed here and derived from cam design. The simulations are carried out by

commercial software for the study of multibody systems and custom programs for the command input implementation.

The results obtained for the residual vibrations are compared to those obtained by conventional command inputs in the

simulations on the same model. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The present paper describes a part of a larger project concerning the analysis of the control of a ma-
nipulator with a couple of ¯exible links for spatial duties. Due to the aims of the present paper, which deals
with the comparison of di�erent motion inputs on the basis of the residual vibration at the end of the
positioning, here we are taking into consideration an arm constituted by a single link only, and we have
considered all the other parts of the structure as being still. This has been done in order to have a better
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evaluation of the results and to avoid introducing undesirable torsional components due to the presence of
several bodies linked by revolute joints. This latter problem could arise if all the parts of the manipulator
were moved simultaneously.

In particular, the authors have considered the open-loop control of the manipulator (Mimmi et al., 1999)
by operating on two levels. On the one hand, the analytical model of the manipulator has been setup and
various command inputs have been tested on this model by means of numerical simulations. On the other
hand, since an experimental setup was available, the same motion inputs have been applied to the ma-
nipulator and the results, as regards the reduction of the residual vibration, compared. The choice of an
open-loop control has been done in view of the use of the structure in space. Therefore, the use of sensors
and feed-back control devices should be avoided due to the necessity of reducing payloads. The description
of the model used for the simulation and the results obtained are the main topic of this paper. First of all,
the motion inputs employed are described, and a brief theoretical support is also given; then, the system is
characterized by identifying the lateral modes in the operating plane. Finally, the mathematical model
obtained is presented and the results compared, by means of simulation, in order to verify the possibility of
reducing residual vibrations at the end of the positioning.

2. Motion inputs

An open-loop control can be adopted, by considering the particular use of the manipulator. In fact both
the manoeuvres and the loading conditions during operation can be forecasted a priori. Moreover, the use
of the open-loop control reduces the energy requirements to the minimum level required for the positioning.
On the contrary, a closed-loop control usually also requires energy for corrections. These results appear
particularly relevant for use in space.

The problem of the open-loop control of ¯exible structures has been considered by many authors. The
motion input that gives the minimum positioning time with null residual vibrations, following the optimal
control theory, is the ``bang-bang'' motion input, made up of a sequence of steps of alternate sign (Meckl
and Seering, 1985a). However, if the sign inversion instants do not correspond with extreme precision to
those required by the theory, relevant residual vibrations may remain. Meckl and Seering (1985a, b) deal
with the problem of positioning of a robotic arm with lumped parameters. As an alternative to the ``bang-
bang'' input, they suggest the control by means of a ``ramped sinusoid'' motion input that gives a slightly
higher positioning time, but with fewer possibilities of exciting the natural modes of the system. Onsai and
Akay (1991) analyze the implementation of a ``bang-bang'' control on a ¯exible arm by considering both
the problem of realizing an actuator able to give the required stepping behavior for the motion torque and
the problem of the uncontrolled modes. Jayasuriya and Choura (1991) consider the problem of the open-
loop control of a ¯exible arm and give an alternative solution to both the ``bang-bang'' and the ``ramped
sinusoids''. Bhat and Miu (1990) analyze a similar case by operating in both the time and frequency do-
mains.

Di�erent types of motion inputs, based on di�erent design principles, have been discussed in this paper.
Two basic types of inputs are considered: the ®rst motion input which is considered, mainly to have a
benchmark for the following results, is a constant acceleration input that represents the simplest motion
input. The performances obtained are not as good as foreseen, due to the presence of the impulsive
variation of the acceleration that excites several natural modes of the structure. In order to avoid this, a
motion input based on a modi®ed trapezoid path for the acceleration has been adopted, as is usually done
in motion input for automatic machines. The theory of the pre-shaping has been applied to both the
previous motion inputs. In order to do this, the ®rst natural lateral frequency of the system has been
identi®ed.
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2.1. Constant acceleration motion input

This is also de®ned as double step motion input, due to the shape of the acceleration pro®le. A null
acceleration segment (and maximum velocity) follows a ®rst segment with constant acceleration, while
another segment with constant acceleration of the opposite sign ends the sequence (Fig. 1). Once the ro-
tation �u to be performed is established and the maximum speed _umax and acceleration �umax are imposed, it
is possible to calculate the duration �t of the operation and the values t1 and t2, which correspond to the shift
from positive to null acceleration and from null to negative, respectively. The details of the calculation are
reported in Appendix A.

2.2. Modi®ed trapezoid motion input

The problem of the reduction of the impulsive variation of the inertia forces usually occurs in the design
of mechanisms for ``alternate'' motion. The algorithm proposed here is based on this principle. In order to
obtain this result, motion input based on a modi®ed trapezoid is very e�ective, in which the initial ramp is
formed by a sinusoid arc. As compared to the original algorithm for the input generation, proposed by
Magnani and Ruggieri (1986), which considers time and rotation as being independent of each other, the
algorithm proposed here determines the minimum possible time �t for the rotation on the basis of the
physical characteristics of the motor. In this case, the constraint is on the maximum velocity _umax. For
further details, see Appendix A.

2.3. Pre-shaping by means of pulse superimposition

The pre-shaping technique can be applied to every motion input; therefore, it is used on both the pre-
viously mentioned motion inputs. The use of a pulse sequence superimposed on the motion input has its
origin in the concept that a step of a certain amplitude can be split into two smaller steps, one of which is
delayed in time (Smith, 1958). By tuning the delay for a linear system with one d.o.f., the e�ect of su-
perimposition causes the deletion of the vibration. This principle presents two weak points, since it is
suitable for linear systems only and systems whose natural frequencies and damping are known exactly.
Improvements in this ®eld have been achieved by Singer and Seering (1990) as regards the robustness, since
it is shown that, by increasing the number of pulses calibrated on the natural frequency, the control is more
robust as regards the uncertainty on both the frequencies and damping. Improvements have also been

Fig. 1. Constant acceleration motion input.
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achieved by Singh and Heppler (1993) for applications on ¯exible structures. In the case proposed here, the
®rst two natural frequencies and a three pulse sequence are considered.

A consequence of the application of this method is the increase of the system operating time, due to
convolution with the original motion input. Two examples of pre-shaping are reported in Figs. 2 and 3,
which show the constant acceleration and the modi®ed trapezoid motion inputs, respectively. The corre-
sponding motion inputs obtained by pre-shaping with two pulses calibrated on the ®rst natural frequency
are also reported. The increase of the operation time is comparable to the period of the frequency con-
sidered for each pulse. Further details are reported in Appendix A. It is worthwhile noting the di�erent
theoretical principles between the reduction of the residual vibration obtained by the modi®ed trapezoid
and the pre-shaped modi®ed trapezoid motion inputs. In the ®rst case, only the impulsive part of the ac-
celeration is removed, and this can be done in di�erent ways, depending on the amplitude of the steps of the
sinusoidal arcs, and the fact whether some natural frequencies of the system are excited is not taken into
consideration. In the second case, the approach is totally di�erent, since the original motion input on which
the pulses are superimposed is not important, because the method operates directly on the ®rst natural
frequencies of the system.

Fig. 2. Constant acceleration and pre-shaped constant acceleration motion input.

Fig. 3. Modi®ed trapezoid and pre-shaped modi®ed trapezoid motion input.
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3. Identi®cation of system parameters

The use of the pre-shaping method requires a knowledge of the natural frequencies and of the damping
of the system with a certain precision. As the theory shows, the use of several pulses increases the robust-
ness of the system, by accepting a 20% uncertainty on the value of the ®rst natural frequency and of the
damping. The determination of the ®rst lateral frequencies of the system has been carried out by using three
di�erent methods.

The ®rst one is the analytical determination of the natural frequencies by means of EulerÕs beam theory
(Thomson, 1993; Rao, 1995); the second is the experimental determination, using an accelerometer at the
free end of the forearm and two strain gauges close to the revolute joint and by exciting the structure by an
impulsive force. The ®ltered FFT spectrum of the accelerometer signal has been reported in Fig. 4 and the
results given in Eq. (1).

f1 � 1:56 Hz; f2 � 9:72 Hz; f3 � 29:2 Hz; f4 � 50:1 Hz: �1�

The third method, which uses ®nite elements, is the only one reported in detail since it has shown good
®tting both with the analytical and the experimental method and it is directly implemented into the sim-
ulation software used.

Fig. 4. FFT spectrum of forearm free-end acceleration (lateral vibration).
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3.1. Determination of the natural frequencies by means of the module ADAMS/linear

Due to its simple geometry, the arm considered has been easily modeled with MSC/NASTRAN f.e.m.
software, using 20 2D plate elements (Fig. 5). The model has been imported into ADAMS software and an
eigenvalue analysis has been performed by the module ADAMS/linear that allows us to determine the ®rst
32 modes, including the torsional and lateral modes in the plane yz also. In the present case, only the ®rst
four lateral modes in the plane xy are considered. These have the following natural frequencies (Fig. 6):

f1 � 1:63 Hz; f2 � 10:2 Hz; f3 � 28:1 Hz; f4 � 54:69 Hz: �2�
The comparison of the values obtained by the three methods shows that the di�erences are very minimal.

The most important comparison is between the experimental values and the values obtained by the analysis
by ADAMS/linear. Since the di�erences are very minimal in this case, the values obtained by means of
linear have been adopted for use during the simulations. The greatest di�erence is observed in the fourth

Fig. 5. Finite element mesh of the forearm.

Fig. 6. Forearm lateral vibration modes.
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mode, which is less important in this case, since only the ®rst two natural frequencies are used for the pre-
shaping.

3.2. Determination of the system damping

Based on several experimental tests with the impulsive force, by means of the logarithmic decay, it has
been possible to determine a value of the damping ratio equal to

n � 0:0458: �3�

4. System response simulations

The model of the manipulator arm has been implemented in ADAMS by means of the f.e.m. model
described previously and of a revolute joint on which the di�erent motion inputs have been applied. This
choice requires a motor which can follow the imposed velocity and acceleration precisely in the experi-
mental set-up and with a perfectly rigid behavior during the motion. The motion inputs implemented are in
the following order:

· constant acceleration motion input;
· constant acceleration motion input, pre-shaping with one frequency and two pulses;
· constant acceleration motion input, pre-shaping with one frequency and three pulses;
· constant acceleration motion input, pre-shaping with two frequencies and three pulses;
· modi®ed trapezoid motion input;
· modi®ed trapezoid motion input, pre-shaping with one frequency and two pulses;
· modi®ed trapezoid motion input, pre-shaping with one frequency and three pulses;
· modi®ed trapezoid motion input, pre-shaping with two frequencies and three pulses.

All the simulations have been carried out for a rotation of 120� and compared with each other. The
maximum angular velocity imposed at the revolute joint was of 0.8 rad/s and the maximum angular ac-
celeration was of 0:4 rad=s2.

Among the results obtained ± such as the displacement at the end of the arm in an absolute reference
system, the velocity and the acceleration at the free-end and at the revolute joint ± only the comparison
between the displacements at the end of the arm is reported in Figs. 7±14. The di�erent ®gures, at the left

Fig. 7. Response to constant acceleration motion input (left), free motion after positioning (right).
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Fig. 8. Response to pre-shaped constant acceleration motion input with two pulses on ®rst natural frequency (left), free motion after

positioning (right).

Fig. 9. Response to pre-shaped constant acceleration motion input with three pulses on ®rst natural frequency (left), free motion after

positioning (right).

Fig. 10. Response to pre-shaped constant acceleration motion input with three pulses on ®rst and second natural frequencies (left), free

motion after positioning (right).
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Fig. 11. Response to modi®ed trapezoid motion input (left), free motion after positioning (right).

Fig. 12. Response to pre-shaped modi®ed trapezoid motion input with two pulses on ®rst natural frequency (left), free motion after

positioning (right).

Fig. 13. Response to pre-shaped modi®ed trapezoid motion input with three pulses on ®rst natural frequency (left), free motion after

positioning (right).
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side, are plotted in the same scale. For a better evaluation of the results, the displacement at the end of the
positioning is reported separately on the right side. However, in this case, it would not be possible to use the
same scale since the positioning takes slightly di�erent times depending on the motion input, and the re-
sidual vibration has a wide range of variation.

Table 1 summarizes the results, by comparing the amplitude of the residual vibration after 6.5 s of
simulation, calculated as the damped exponential envelope of the vibration. The comparison of the per-
formances obtained by di�erent motion inputs for the reduction of the residual vibration at the end of
positioning has to be done on the basis of a given benchmark, which is the response of the system to the
constant acceleration motion input, shown in Fig. 7. By ®rst considering the comparison with the modi®ed
trapezoid motion input, it is possible to note a reduction of the vibration amplitude (Fig. 11). This is strictly
correlated to the modi®cation of the motion input, with respect to the constant acceleration input. In fact,
the latter has impulsive variation of the acceleration that excites a wide range of frequencies and that is not
tuned in order to delete the relative e�ect as it is done in the case of the pre-shaping. A more signi®cant
reduction is obtained with both the constant acceleration and the modi®ed trapezoid pre-shaped inputs. In
these cases, given the number of pulses and the frequencies considered, the di�erent performances between
the pre-shaped inputs obtained from the constant acceleration or the modi®ed trapezoid are minimal.

Moreover, since only the ®rst mode appears to be excited in the simulations, the results obtained with the
use of the pre-shaping based on two frequencies do not show improvement with respect to the cases with
just one frequency. However, it has been considered important to show the simulations also in this case,
since when a more complicated structure is considered, e.g. with two links, the e�ect of considering also the
second frequency is not negligible (Mimmi and Pennacchi, 2000).

Table 1

Comparison of the di�erent motion inputs

Motion input Amplitude after 6.5 s in mm

Constant acceleration motion input 3.75

Constant acceleration motion input, pre-shaping with one frequency and two pulses 0.14

Constant acceleration motion input, pre-shaping with one frequency and three pulses 0.13

Constant acceleration motion input, pre-shaping with two frequencies and three pulses 0.12

Modi®ed trapezoid motion input 1.25

Modi®ed trapezoid motion input, pre-shaping with one frequency and two pulses 0.1

Modi®ed trapezoid motion input, pre-shaping with one frequency and three pulses 0.09

Modi®ed trapezoid motion input, pre-shaping with two frequencies and three pulses 0.09

Fig. 14. Response to pre-shaped modi®ed trapezoid motion input with three pulses on ®rst and second natural frequencies (left), free

motion after positioning (right).
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5. Conclusions

In this paper, we have presented the comparison between di�erent motion inputs in order to reduce the
residual vibration after positioning of a ¯exible manipulator arm. The model of the ¯exible arm has been
implemented in a multibody program, and several simulations have been carried out. From the simulations,
it is possible to stress the following:

· Motion inputs with pre-shaping are always better than original motion inputs. Therefore, it is useless to
apply pre-shaping to complicated motion inputs: i.e. a motion input with pre-shaping obtained from
constant acceleration gives better results than a plain modi®ed trapezoid.

· Once the number of pulses and frequencies considered for the pre-shaping is given, the motion obtained
by the modi®ed trapezoid gives better performances than those by constant acceleration. The di�erence
is very small, so the choice of applying such a complicated motion input has to be carefully considered.

· If the electric motor can follow complex motion inputs, the use of input with pre-shaping is convenient;
otherwise, the use of a plain modi®ed trapezoid motion input may reduce the residual vibration. In this
case, the motion input can be further tuned by operating on the steps di of the algorithm of the input
generation.
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Appendix A

A.1. Constant acceleration motion input

Given the maximum value available for the angular velocity _umax, that of the maximum imposed angular
acceleration �umax and the required rotation �u, it is possible to determine the time �t needed for the operation.
This can be done by means of the following algorithm:

(1) Let the time necessary for the rotation be supposed equal to �t. It is divided into three parts d1, d2 and
d3 (Fig. 1) with the following constraint between the values of ti and di:X3

i�1

di � �t; tk �
Xk

i�1

di: �A:1�

(2) At the end of the ®rst step, d1, the maximum velocity will be reached _umax; moreover, since the system
has arrived at the instant t1 with constant acceleration, it results that

_u1 � _umax � �umaxd1 ! d1 � _umax

�umax

: �A:2�

(3) By considering that the system has to arrive at �u with null velocity at the ®nal instant �t, it is possible
to impose this constraint by evaluating the corresponding expression of u3 and _u3:

_u3 � 0 � _umax ÿ �umaxd3;

u3 � �u � _umaxd2 � 1
2
�umaxd

2
1 � _umaxd3 ÿ 1

2
�umaxd

2
3:

�A:3�
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(4) If we make a system with Eqs. (A.2) and (A.3), the duration of the intervals di are determined, and
thus also �t with the ®rst of Eq. (A.1):

d1 � _umax

�umax

; d2 � �u�umax ÿ _u2
max

_umax �umax

; d3 � _umax

�umax

: �A:4�

For instance, the time histories of �u; _u;u are shown in Fig. 1, as regards a rotation of 1.57 rad, where the
maximum angular velocity and acceleration are, respectively, 0.5 rad/s and 1 rad/s2.

A.2. Modi®ed trapezoid motion input

Let the time necessary for the rotation equal to angle utot � �u be supposed equal to �t. The algorithm
follows these steps:

(1) The time interval �t is divided into seven parts d1; d2, d3, d4, d5, d6 and d7, which can be equal to zero if
that is the case (Fig. 15) with the following constraint between the values of ti and di:X7

i�1

di � �t; tk �
Xk

i�1

di: �A:5�

(2) If sinusoid arcs connect the constant acceleration intervals, the inertia force variation is not im-
pulsive. Therefore, if the initial conditions are u0 � 0 and _u0 � 0, the corresponding command input for
angular acceleration and angular velocity are of the type reported in Fig. 15. The analytical expression of
the di�erent arcs is reported in Magnani and Ruggieri (1986);

(3) Now, the constraint on the maximum available motor velocity is introduced by observing that the
maximum velocity _umax, is reached at the end of interval d3, where the velocity value is

_u3 � _u2 � A
2d3

p
: �A:6�

For the determination of _u3, it is necessary to go back to the instant t � 0, by also determining the velocities
_u2 and _u1 at the end of intervals d2 and d1:

_u2 � _u1 � Ad2; _u1 � A
2d1

p
: �A:7�

The constant A can be determined by imposing the rotation u7 equal to �u and the velocity _u7 of null value,
i.e. the point-to-point operation is concluded with null ®nal velocity:

u7 � �u;
_u7 � 0:

�
�A:8�

Fig. 15. Modi®ed trapezoid motion input.
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Eq. (A.8) leads to

�A:9�

Therefore, once given the di sequence, the minimum time �t satis®es the following equation:

_u3 � _umax ! A��t� 2d1��t�
p

 
� d2��t� � 2d3��t�

p

!
� _umax: �A:10�

(4) At this point, both the rotation �u and the actual time �t for the operation are known and the algorithm
loops back to point 1 to de®ne the actual command inputs.

Note that the algorithm described presents an arbitrary choice for the intervals di and that the calcu-
lation of the time �t depends on this choice. In fact, the more the interval at _umax constant velocity is ex-
tended, the more the operation time is reduced.

A.3. Pre-shaping method

In this part of the appendix, the calculations for determining the pulse amplitude and their temporal
sequence are reported. This allows the pre-shaping method to be applied to the motion input. The starting
point is the response of a system to a general succession of n pulses. In particular the response to the pulse
applied at time tj is

yj�t� � Aj
x0�������������

1ÿ n2
p eÿnx0�tÿtj� sin x0

�������������
1ÿ n2

q
�t

�
ÿ tj�

�
: �A:11�

By doing the following substitutions

Bj � Ajx0�������������
1ÿ n2

p eÿnx0�tfÿtj�; a � x0

�������������
1ÿ n2

q
; /j � ÿx0

�������������
1ÿ n2

q
tj �A:12�

and using them in Eq. (A.11), the response to the jth pulse becomes

yj�t� � Bj sin�at � /j�: �A:13�
If we consider a case with two pulses and the system is linear, the responses can be superimposed:

B1 sin�at � /1� � B2 sin�at � /2� � Aamp sin�at � w�; �A:14�
where

Aamp �
��������������������������������������������������������������������������������������������������
B1 cos/1 � B2 cos/2� �2 � B1 sin /1 � B2 sin /2� �2

q
;

w � tanÿ1 B1 cos/1 � B2 cos/2

B1 sin /1 � B2 sin /2

� �
:

�A:15�
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The condition of having no residual vibration at the end of the pulse sequence is given by the null amplitude
Aamp, which is equivalent to

A1eÿnx0�tfÿt1� sin t1x0

�������������
1ÿ n2

p� �
� A2eÿnx0�tfÿt2� sin t2x0

�������������
1ÿ n2

p� �
� 0;

A1eÿnx0�tfÿt1� cos t1x0

�������������
1ÿ n2

p� �
� A2eÿnx0�tfÿt2� cos t2x0

�������������
1ÿ n2

p� �
� 0:

8><>: �A:16�

There are four unknowns in system (A.16), A1, A2, t1 and t2, with only two equations. Due to the arbi-
trariness in the application of the pulses, it is possible to apply the ®rst at time t1 � 0. A further condition
can be obtained by the normalization of the pulse amplitude, whose sum has to be equal to the unitary
pulse, in order to guarantee that the signal is not ampli®ed. Therefore, the system becomes

A1eÿnx0�tfÿt1� sin t1x0

�������������
1ÿ n2

p� �
� A2eÿnx0�tfÿt2� sin t2x0

�������������
1ÿ n2

p� �
� 0;

A1eÿnx0�tfÿt1� cos t1x0

�������������
1ÿ n2

p� �
� A2eÿnx0�tfÿt2� cos t2x0

�������������
1ÿ n2

p� �
� 0;

t1 � 0;
A1 � A2 � 1:

8>>>><>>>>: �A:17�

From the ®rst equation of system (A.17), it follows that

A2eÿnx0�tfÿt2� sin t2x0

�������������
1ÿ n2

q� �
� 0: �A:18�

In order for Eq. (A.18) to be satis®ed, by excluding the trivial solution A2 � 0, the argument of sine
function has to be null. This condition allows the value t2 to be calculated:

t2x0

�������������
1ÿ n2

q
� �np �A:19�

with n 2 N; since t2 > 0, from Eq. (A.19), by considering the ®rst time step acceptable, it follows that

t2 � p

x0

�������������
1ÿ n2

p : �A:20�

By using Eq. (A.20) in the second equation of system (A.17) and with suitable transformations, we have

A1 � A2enp=
�������
1ÿn2
p

cosp � 0! A1 ÿ A2enp=
�������
1ÿn2
p

� 0; �A:21�
and ®nally, by considering the third equation of system (A.17):

t1 � 0; A1 � 1

1� K
; t2 � DT ; A2 � K

1� K
with K � eÿnp=

�������
1ÿn2
p

; DT � p

x
�������������
1ÿ n2

p :

�A:22�
If three pulses are taken into account, two further unknowns have to be calculated: the time t3 and the

amplitude of the third pulse A3. The new constraints can be obtained on the condition that also the de-
rivative of Eqs. (A.16) have to be equal to zero. This is equivalent to considering that the system, at the end
of the third pulse, has null amplitude and velocity of vibration. The remaining conditions of applying the
®rst pulse at the initial time and the condition on the sum of the amplitudes are the same of the two pulse
case, therefore the system becomes
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A1eÿnx0�tfÿt1� sin t1x0

�������������
1ÿ n2

p� �
� A2eÿnx0�tfÿt2� sin t2x0

�������������
1ÿ n2

p� �
� A3eÿnx0�tfÿt3� sin t3x0

�������������
1ÿ n2

p� �
� 0;

A1eÿnx0�tfÿt1� cos t1x0

�������������
1ÿ n2

p� �
� A2eÿnx0�tfÿt2� cos t2x0

�������������
1ÿ n2

p� �
� A3eÿnx0�tfÿt3� cos t3x0

�������������
1ÿ n2

p� �
� 0;

A1t1eÿnx0�tfÿt1� sin t1x0

�������������
1ÿ n2

p� �
� A2t2eÿnx0�tfÿt2� sin t2x0

�������������
1ÿ n2

p� �
� A3t3eÿnx0�tfÿt3� sin t3x0

�������������
1ÿ n2

p� �
� 0;

A1t1eÿnx0�tfÿt1� cos t1x0

�������������
1ÿ n2

p� �
� A2t2eÿnx0�tfÿt2� cos t2x0

�������������
1ÿ n2

p� �
� A3t3eÿnx0�tfÿt3� cos t3x0

�������������
1ÿ n2

p� �
� 0;

t1 � 0;
A1 � A2 � A3 � 1:

8>>>>>>>>>>>><>>>>>>>>>>>>:
�A:23�

Similar to the case of two pulses from the ®rst and the third equation of system (A.23), by considering
the argument of sine functions as null, we have

t2 � p

x0

�������������
1ÿ n2

p ; t3 � 2p

x0

�������������
1ÿ n2

p : �A:24�

By substituting the values of Eqs. (A.24) in the second and fourth equations of system (A.23) and by
solving the latter with the sixth equation, we ®nally have

t1 � 0; A1 � 1

1� 2K � K2
; t2 � DT ; A2 � 2K

1� 2K � K2
; t3 � 2DT ;

A3 � K2

1� 2K � K2
with K � eÿnp=

�������
1ÿn2
p

; DT � p

x
�������������
1ÿ n2

p : �A:25�
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